Interactive Simulation: UCF EIN5255

VR Applications

Class 5
Dr. Nabil Rami

http://www.simulationfirst.com/ein5255/

Last week

= Output Subsystem
= Visual
e Audio
= Haptic/Tactile
= Input Subsystem
e Locomotion
= Tracking
* Gesture
= Voice

Page5-1



Interactive Simulation: UCF EIN5255

Simulation Software

» Is the core simulator component that
enables the other components to
perform their functions within the

simulation system
m Collects data from the user via the
input devices

m Processes the data and updates the
simulation state

Simulation Software

m Presents the simulation state to the
user via the output devices

s Shares the local state with other
simulators via the communications
pipeline

Page 5-2



Interactive Simulation: UCF EIN5255

Simulation Software

m This class focus is on what makes a
good simulation software

» Rather than talking about specific
software

Simulation Software

= Simulation hardware, software, and
end user requirements are constantly
changing

» The software must be able to pull
together available technology and
integrate it into a seamless package

that solves a particular simulation
problem

Page 5-3



Interactive Simulation: UCF EIN5255

Functional Reguirements

m Start by defining a set functional
requirements:

e Ease of Use: To promote efficiency and
productivity in the development process

» High Performance: To support real-time,
large scale simulation

» Maintainability: To minimize life-cycle
cost

Functional Reguirements

= Scalability: To support new
requirements and ever increasing scope

e Cross-Platform Support: To support
multiple operating systems to enable
maximum selection of available
hardware

* Open Standards Support: To gain
maximum leverage from existing and
future simulation products

Page 5-4



Interactive Simulation: UCF EIN5255

Programming Paradigm

m A programming paradigm is a
specific set of rules and models that
the programmer, who subscribe to
that paradigm, has to follow

m The challenge is to use a
programming paradigm that allows
the software to easily fulfill the
functional requirements

Programming Paradigm

m The closer the paradigm matches the
problem-space, the easier it will be
to solve the problem

m For example, a command line
interface to a graphics program will
require a great effort from the user
than a graphical user interface

Page5-5



Interactive Simulation: UCF EIN5255

Programming Paradigm

= Dynamically reconfigurable and
extendable object-oriented paradigm
Is an example of a programming
paradigm that works well with
simulation software

Programming Paradigm

» Some of the fundamental principles

of this paradigm are:

= Support Modularity: Enables functional
disassembly of the simulation problem
space

* Minimize Dependencies Between
Modules: Simplifies code changes
enhancing ease of use

Page 5-6



Interactive Simulation: UCF EIN5255

Programming Paradigm

» Support Dynamic Reconfiguration:
Allows systems to be reconfigured at
runtime to improve usability

s Support Extension of Functionality:
Provides a mechanism to extend the
functionality, which enhance
maintainability and scalability

Architecture

= Functional boundaries and
methodologies defined in the
requirements and programming
paradigm are crafted into a blueprint
that would support the
implementation

m The same as building a house

Page5-7



Interactive Simulation: UCF EIN5255

Architecture

AL

Foundation Classes

i

poddng uuoje)j-ssoay
TVSO

i,

Architecture

m The architecture is based on four key
components types:

= Operating System Abstraction Layer
(OSAL)

e Foundation Classes
e Modules
e Plug-Ins

Page 5-8



Interactive Simulation: UCF EIN5255

OSAL

m It is a set of software utilities that
provides a common set of operating
system (OS) level services while
encapsulating the underlying OS
iImplementation

m Services include timing,
synchronization, dynamic loading of
runtime libraries...

OSAL

= Exclusively utilizing the OSAL
services, the software remain OS and
platform independent

m Results in a software easier to
maintain

Page 5-9



Interactive Simulation: UCF EIN5255

Foundation Classes

= The foundation classes are the unifying
software infrastructure that provides the
common set of services needed by all
other components of the architecture

s These services include:

e data communications between the
components

« conflict resolution
= scheduling
- data capture

Modules

= Modules are the primary mechanism that
the architecture uses to provide:
e Ease of use
* Maintainability
» Key simulation functionality

= A module is a reusable, modular software
library that provides specific functionality
to the simulation system trough a well
defined and published interface

Page 5- 10



Interactive Simulation: UCF EIN5255

Modules

m The guiding principle is to design
modules that contain essential
simulation functionality in a package
that depends on a minimal amount
of information from the remainder of
the simulation

Modules

= Modules of the same type are
interchangeable because they are
written to satisfy the same
standardized interface

= Knowing the interface, other
developers can implement their own
modules

Page 5-11



Interactive Simulation: UCF EIN5255

Modules

» Common modules that can be seen
INn a simulation software:

= AudioFX: Responsible for providing
spatialized audio information

= Entity: Responsible for gathering,
maintaining, and transmitting entity
(object) information

» Environment: Responsible of managing
the state of the virtual world and
providing state information

Modules

- Event: Responsible for gathering, maintaining,
and transmitting events such as collision
detection, detonation...

e Human Computer Interface (HCI): Provides
access to input and Output (1/0) devices

» Network: Responsible for capturing and
transmitting all simulation network information

e Render: Responsible for providing 3D visual
information and 2D overlays

« 3D Sensor: Provides access to 3D tracking
devices

Page 5-12



Interactive Simulation: UCF EIN5255

Plug-Ins

= A plug-In is a reusable, modular
software library which provides
specific functionality, and operates
as a subsystem of a specific
application

Plug-ins differ from modules in that
plug-ins are implemented using the
functionality provided by the

foundation classes, modules, OSAL

Plug-Ins

Plug-ins are OS and platform
independent, but software
architecture dependant

= All plug-ins have the same interface
that consists of simple member
functions that allow the developer to
Iinitialize, synchronize, and shut
down... modules

Page 5-13



Interactive Simulation: UCF EIN5255

Plug-Ins

= A collection of plug-ins that interact
to solve a simulation problem is
called an application

Sample Application

= A Stealth application allows the user
to see the virtual world without being
detected by other simulations on the
network

= A basic Stealth allows the user to fly
around the virtual world using a
joystick

= The viewpoint is completely
controlled by the joystick

Page5-14



Interactive Simulation:

Stealth

Foundation Classes
Metorork

Thiisri bustesd

B Simulation

Metwirk

+ Monitor

- Terrum

Database

— Jor Stick

UCF EIN5255

Foundation Classes

Cross-Platform Support

Next Week

m Chapter 7
s Discussion
s Exam Review

Page 5- 15



